高中数学教学心得体会
当我们有一些感想时,不妨将其写成一篇心得体会,让自己铭记于心,这样就可以总结出具体的经验和想法。那么你知道心得体会如何写吗?下面是小编帮大家整理的高中数学教学心得体会,希望对大家有所帮助。
高中数学教学心得体会1一直以来,我都在不断反思、探索,寻觅一条如何才能使学生学好数学,通向高考成功之路。在一段时期的实践中,我发现学生在学习过程中存在着几点问题:
1、很多问题都要靠我讲他们听,我讲得多学生做得少,同学们不善于挤时间,独立动手能力比较差,稍微变个题型就不知所措,问其原因,回答不会,做题没思路,一没思路就不想往下做。平时做题少,很多题型没有见过,以致于思维水平还没有达到一定高度,做起题来有困难。
2、基础知识掌握的不扎实,有些该记忆的公式没有记住、该理解的概念没有理解,尤其是立体几何基本问题的求法,复合函数的求导法则等,导致做题时不知该用哪个公式,还得去翻书。
3、上课听课的效果不好。大部分同学都说,课堂上我讲的东西极大部分能听懂,但一到自已做题就不会。其实这部分同学听懂的只是对某一道题表面上的东西,其实质的东西,它所蕴含的思想方法,没有融入到大脑中,不会举一反三,没有从问题的表面看到本质,思维没有得到升华,课下又不巩固复习,导致讲过的题型仍然不会做。
4、现在有少数学生比较懒,没有养成良好的学习习惯,有些问题他知道思路后,就只知道说不动手,数学课桌子上不准备草稿纸,以致于每次考试都犯了眼高手低的毛病,得不了高分。
对于以上学生存在的问题,我借用了以下的一些基本办法:
1、关爱学生,激起学习激情。我知道热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。
2、每天除了把资料书的作业做完后还做3道典型的高考题,当天批改,对没有完成作业进行批评教育直到其改进为止。
3、强化基础知识的记忆,对一些重点知识、一些性质进行不定时的测验,及时检查他们对基础知识的掌握程度,以便因材施教。
4、提高课堂45分钟效率。课前尽量认真备课,把可能遇见的情况逐一解决,并时常练一些题同时归纳近几年高考的主要题型和所有的知识点。在课堂上我尽量把一些解题的主要思想方法和基本技巧,比如数形结合思想、函数方程的思想、化归与转化思想,选择题中的直接法,排除法,特殊值法,极值法等教给他们,既使他们不能立刻学会,但时间久了,自然而然的就能把方法融入解题当中了。
5、高三复习注意到低起点、重探究、求能力的同时,还注重抓住分析问题、解决问题中的信息点、易错点、得分点,培养良好的审题、解题习惯,养成规范作答、不容失分的习惯。课下个别辅导,通过辅导能知道哪些知识存在问题,或者是我上课遗漏的问题,都能及时得到解决。
6、认真分析数学临界内的临界生和临界外的临界生的学习数学的状态。比如说每次测试都能在90分以上的同学,应建议他们课后可做一些适合自己的题目。对一些数学“学困生”,鼓励他们多问问题,多思考。采用低起点,先享受一下成功,然后不断深入提高,以致达到适合自己学习情况的进步和提高。
高中数学教学心得体会2通过学习对教师如何适应新课改下的教学,如何转变教学观念,有了一定的认识,这里谈谈自己的一点心得体会。
一、课改要能发挥学生主体性和积极性,有一个创新思维活动的空间,关键在于教师;教师如何引导,启发,点拔?能否真正地把学生引到这一领域?教师在平时备课中不但要吃透教材,而且要尽量地搜集,制作与教材有关的知识,教具;又要善于把握学生的心里,使学生能够与老师发生共鸣。数学学科和生活,生产密切相关。因此,在教学中教师要善于引导学生从熟悉的事物,现象出发,根据学生掌握的情况,创设情境提出问题,激励学生共同参与,发挥想象,积极思维来解决问题的意向。
二、面对新课程,教师应确定更高层次的教学目标。对于教学课而言,不能光是知识的传授,而是包括知识与技能、思考、解决问题、情感与态度等几个方面。那种追求“能够教好一节课”或“教出了几个能考高分的学生”为目的的教学已经不符合课改精神了。教会学生知识,教给学生方法,教给学生独立和生存的能力应成为所有教师的职业追求。教学过程是师生交往、积极互动、共同发展的过程,是为学而教,以学定教,互教互学,教学相长的过程。教师必须改变传统的压抑学生创造性的教学环境,通过教学模式的优化,改变教师独占课堂、学生被动接受的信息传递方式,促成师生间、学生间的多向互动和教学关系的形成。教师不是数学知识的传授者、解惑者,而是知识的促进者、引导者;学生不是知识的接受者、复制者,而是知识的发现者、创造者。教师的作用主要在于“导”,就是通过精心设计教学过程,善于对学生进行启发诱导,点燃其思维的火花,引导学生主动探索数学结论的形成过程,体会科学家走的路,充分体现学生是数学学习的主人。环顾周围,在我们的教学中还存在许多这样的现象:一些学生在生活中早已熟悉的东西,教师还在不厌其烦地从头讲起;一些具有较高综合性和较高思维价值的问题,教师却将知识点分化,忽视了学生自主探究和知识的综合运用能力的培养;一些本该让学生自己去动
手操作、试验、讨论、归纳、总结的内容却被老师取而代之;一些学生经过自己的深思熟虑形成的独特见解和疑问,往往因为老师的“就照我教的来”而扼杀。新课程理念下的课堂教学的特点具有开放性、创造性、不确定性。在新课程下,教师应当成为学生学习的组织者、引导者和合作者,激发学生的学习积极性、创造性,为学生提供从事活动的机会,构建开展研究的平台,让学生成为学习的主人。
三、教师必须注重加强教学的情感性设计,实现课堂教学民主化,建立平等、宽容、和谐的师生关系。对教学而言,交往是弥漫、充盈于师生之间的一种教育情境和精神氛围;对学生而言,交往意味着心态开放、主体性凸现,个性张扬,创造性得到释放;对教师而言,交往意味着与学生一起分享理解,意味着角色定位的转移,是自己生命活动、专业成长和实现自我的过程。时刻关注每一个学生的学习状态,赏识、期待和鼓励是学生成长的最好动力,鼓励学生大胆发言、敢于质疑,勇于标新立异,给学生展示自我、探索创新的机会。尊重学生的个体差异,珍惜学生独特的感受、体验和理解,促进学生的个性化学习和充分发展,但要追求形式和效果统一的课堂。以上是我在新课该的教学中的一点体会和心得,还不成太熟。在以后的教学工作中,我将会严格按照新课标的要求,上好每节课,掩卷沉思,彻底贯彻新课程的理念思想!篇4:高中数学新课程培训心得体会
高中数学新课程培训心得体会阴雨绵绵,阻挡不了我们培训的脚步,烈日炎炎,燃烧了我们培训的热情。有幸成为第一批培训学员,带着疑惑,带着欣喜,带着希望参加为期10天紧张而又认真的数学新课程培训,受益匪浅,感受颇多 ……此处隐藏29669个字……子集。
(3)能力要求不同。初中数学主要培养计算能力和对数学规律的运用,对数学思想方法要求较低。高中数学不仅要求提高空间想象能力、抽象概括、推理论证、运算求解、数据处理等基本能力,而且要形成科学地提出、分析、解决问题(包括简单的实际问题)的能力、数学表达和交流能力、发展独立获取数学知识的能力。
(4)初中学生学习数学,学生更多地习惯于被动地接受知识,对概念规律习惯于死记硬背。教师常常用有充足的时间对重难点内容进行反复强调,对各类习题的解法进行举例示范,学生也有足够时间进行演练、巩固(包括到黑板上板书)。初中教师重视直观、形象教学,老师每讲完一道例题后,都要布置相应的练习,学生到黑板表演的机会相当多。初中教师可以把题型分类,让学生死记解题方法和步骤。而到了高中,教师在授课时强调数学思想和方法,注重举一反三,在严格的论证的推理上下功夫。进入高中后,则既要重视学习结果的记忆,更要重视对知识的理解,要能够自学钻研,消化知识;要重视逻辑推理,要能进行纵横判断、推理、假设、归纳等一系列更为高级的思维活动。侧重启发、点拨,鼓励学生自学、创新,让学生在教师的讲解或提示中理解、掌握知识的精髓,提高学习的能力。学习高中数学学习是一种积极、主动的学习过程,要具有独立思考、勇于探索的创新精神。在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。
三、措施
既然我们例举了初高中的这么多的差异性,我们的教学工作应该怎么去做?
(1)学习内容的衔接:
要在高中学习中需要补充的内容:
①立方和与差的公式,这部分内容在初中教材中已删去不讲,但进入高中后,它的运算公式却还在用。
②因式分解,十字相乘法在初中已经不作要求了,同时三次或三次以上多项式因式分解也不作要求了,但是到了高中,教材中却多处要用到。
③二次根式中对分子、分母有理化,这也是初中不作要求的内容,但是分子、分母有理化却是高中函数、不等式常用的解题技巧,特别是分子有理化。
④二次函数,二次函数的图像和性质是初高中衔接中最重要的内容,二次函数知识的生长点在初中,而发展点在高中,是初高中数学衔接的重要内容。二次函数作为一种简单而基本的函数类型,是历年来高考的一项重点考查内容,经久不衰。
⑤根与系数的关系(韦达定理)。
⑥图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点、坐标轴对称问题必须掌握。
⑦含有参数的函数、方程、不等式,初中教材中同样不作要求,只作定量研究,而在高中,这部分内容被视为重难点。方程、不等式、函数的综合考查常成为高考综合题。
⑧几何部分很多概念(如重心、垂心、外心、内心等)和定理,初中生大都没有学习,而高中教材多常常要涉及。
这些补充不一定需要在高一开学的一个多星期内完成,有一部分内容可以在以后的教学中逐步渗透。
(2)对学生做好学法的指导
高一年级开始的前半学期直至整个高一都要以教学生如何学习,以培养学生学习习惯为目的,加强学法指导。①认真预习、认真听课、课后独立完成作业的习惯,上课听讲一定要理清思路,要把老师在讲课时运用的思维形式、思维规律和思维方法理解清楚;②建立好笔记本、错题本,养成练后反思的习惯,习题做完之后,要从五个层次反思:
1)怎样做出来的?想解题采用的方法;
2)为什么这样做?想解题依据的原理;
3)为什么想到这种方法?想解题的思路;
4)有无其它方法?哪种方法更好?想多种途径,培养求异思维;
5)能否变通一下而变成另一习题?想一题多变,促使思维发散。当然,如果发生错解,更应进行反思:错解根源是什么?解答同类试题应注意哪些事项?如何克服常犯错误?
(3)加强题型归纳,加强规范训练,注重知识落实。在平时教学中教师要注重解题规范性与条理性训练,典型例题详细讲解,完整板书,做学生的典范。对学生练习和作业中不规范的地方,教师应及时指正,阅卷中应严格扣去不规范的分。我们上一届高一在学完三角函数后也作了一个题型归纳的专题练习①给值求值;②给值求角;③给角求值;④与三角函数有关的值域;⑤单调性;⑥图象及图象变换。
(4)认真研究教材与大纲,提高课堂的效能。要研究好各种课型的教学,不要把所有教学都变成解题教学,特别要做好概念课型的教学。数学概念是人类对现实世界空间形式和数量关系的概括反映,是建立数学法则、公式、定理的基础,也是运算、推理、判断和证明的基石,更是数学思维、交流的工具。概念符号化是概念教学的必要步骤,这是因为数学概念大都由规定的数学符号表示,这使数学的表示形式更简明、清晰、准确,更便于交流与心理操作。这里要注意让学生掌握概念符号的意义,并要进行数学符号和其意义的心理转换技能训练,以促进他们对数学符号意义的理解。高中的概念的形成很多遵循以下规律:直观化认识(实例)→文字语言的描述→符号化语言的描述,这也符合我们学生学习的规律。例如函数单调性的定义:
直观化认识:
的图象,当时,图象自左向右是下降的;当时,图象自左向右是上升的。
文字语言的描述:在区间上,随着自变量的增大,函数值减小;在区间上,随着自变量的增大,函数值也增大。
还可以给出单调函数的“描述性定义”:设函数的定义域为,区间,则区间上,若随着自变量
增大,函数值
也增大(减小),则称函数在区间上是增函数(减函数)
符号化语言的描述:在区间任意取,当时,都有;在区间任意取,当时,都有。
单调性的定义:设函数的定义域为,如果对于定义域内的某个区间
上的任意两个自变量的值,当时,都有(),那么就说函数
在区间上是增函数(减函数)。
由此概念教学的策略可以通过以下几个方面来实现:
①直观化;高中对函数研究一般方法就是,加强“数”与“形”的结合,由直观到抽象,由特殊到一般。如函数的单调性这节课的教学中,我们可以对图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化的数学特征,从而进一步用数学符号刻画。
②通过正例和反例深化概念理解;概念的例可加深概念理解,通过“样例”深化概念认识是必须而有效的教学手段。其实,数学思维中,概念和样例常常是相伴相随的。提起某一概念,头脑中的第一反应往往是它的一个“样例”,这表明例在概念学习和保持中的重要性。
③利用对比明晰概念;如“排列”和“组合”,通过对比可以避免混淆;“最值”和“极值”,通过对比可认识它们的差异,即前者有整体性而后者仅有局部性。
④运用变式完善概念认识;
⑤对概念精致浓缩,也就是回到简单而本质的关键词上,对关键词的表征就是概念本质属性的表征。